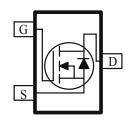

AM2310N


These miniature surface mount MOSFETs utilize High Cell Density process. Low $r_{DS(on)}$ assures minimal power loss and conserves energy, making this device ideal for use in power management circuitry. Typical applications are lower voltage application, power management in portable and battery-powered products such as computers, printers, PCMCIA cards, cellular and cordless telephones.

•	Low r _{DS(on)} Provides Higher Efficiency and
	Extends Battery Life

- Fast Switch
- Low Gate Charge
- Miniature SOT-23 Surface Mount Package Saves Board Space

PRODUCT SUMMARY			
V _{DS} (V)	$r_{DS(on)}(\Omega)$	$I_{D}(A)$	
30	$0.065 @ V_{GS} = 4.5V$	2.2	
30	$0.082 @ V_{GS} = 2.5V$	2.0	

ABSOLUTE MAXIMUM RATINGS (T _A = 25 °C UNLESS OTHERWISE NOTED)				
Parameter			Maximum	Units
Drain-Source Voltage			30	V
Gate-Source Voltage			±8	V
	$T_A=25^{\circ}C$		2.2	
Continuous Drain Current ^a	$T_A=25^{\circ}C$ $T_A=70^{\circ}C$	1D	1.7	A
Pulsed Drain Current ^b		I_{DM}	10	
Continuous Source Current (Diode Conduction) ^a		I_S	0.45	A
D	$T_A=25^{\circ}C$	D	0.5	W
Power Dissipation ^a	$T_A=25^{\circ}C$ $T_A=70^{\circ}C$	PD	0.42	VV
Operating Junction and Storage Temperature Range		T _J , T _{stg}	-55 to 150	°C

THERMAL RESISTANCE RATINGS					
Parameter	Symbol	Maximum	Units		
M · I · · · · · · · · · · · · · · · · ·	t <= 5 sec	D	250	°C/W	
Maximum Junction-to-Ambient ^a	Steady-State	R_{THJA}	285		

Notes

- a. Surface Mounted on 1" x 1" FR4 Board.
- b. Pulse width limited by maximum junction temperature

AM2310N

SPECIFICATIONS (T _A = 25°C UNLESS OTHERWISE NOTED)							
D			Limits			T T •	
Parameter	Symbol	Test Conditions	Min	Тур	Max	Unit	
Switch Off Characteristics							
Drain-Source Breakdown Voltage	V _{(BR)DSS}	$V_{GS} = 0 \text{ V}, I_D = 250 \text{ uA}$	30				
Zara Cata Valtaga Drain Current	т	$V_{DS} = 24 \text{ V}, V_{GS} = 0 \text{ V}$			1		
Zero Gate Voltage Drain Current	Idss	$V_{DS} = 24 \text{ V}, V_{GS} = 0 \text{ V}, T_{J} = 55^{\circ}\text{C}$			10	μΑ	
Gate-Body Leakage	Igss	$V_{DS} = 0 \text{ V}, V_{GS} = \pm 8 \text{ V}$			±100	nA	
Switch On Characteristics							
Gate-Threshold Voltage	V _{GS(th)}	$V_{DS} = V_{GS}, I_D = 250 \text{ uA}$	0.43	0.7	1.0	V	
On-State Drain Current ^A	I _{D(on)}	$V_{DS} = 5 \text{ V}, V_{GS} = 4.5 \text{ V}$	10			A	
		$V_{GS} = 4.5 \text{ V}, I_D = 2.2 \text{ A}$		54	65		
Drain-Source On-Resistance ^A	rdS(on)	$V_{GS} = 4.5 \text{ V}, I_D = 2.2 \text{ A TJ} = 55^{\circ} \text{C}$		80	99	mΩ	
		$V_{GS} = 2.5 \text{ V}, I_D = 2.0 \text{ A}$		70	82		
Forward Tranconductance ^A	gß	$V_{DS} = 5 \text{ V}, I_D = 2.2 \text{ A}$		13		S	
Diode Forward Voltage	V _{SD}	$I_S = 0.45 \text{ A}, V_{GS} = 0 \text{ V}$		0.65	1.2	V	
Dynamic ^b							
Total Gate Charge	Qg	V 10 V V 4 5 V		7.0	9.0		
Gate-Source Charge	Qgs	$V_{DS} = 10 \text{ V}, V_{GS} = 4.5 \text{ V},$ $I_{D} = 2.2 \text{ A}$		1.1		nC	
Gate-Drain Charge	Qgd	ID – 2.2 A		1.9			
Switching							
Turn-On Delay Time	t _{d(on)}			4	11		
Rise Time	$t_{\rm r}$	$V_{DS} = 10 \text{ V}, I_D = 1 \text{ A}, R_G = 6 \Omega,$		11	19	ns	
Turn-Off Delay Time	td(off)	$V_{\rm GEN} = 4.5 \text{ V}$		18	30	113	
Fall-Time	t_{f}			5	10		

Notes

- a. Pulse test: $PW \le 300us duty cycle \le 2\%$.
- b. Guaranteed by design, not subject to production testing.